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ABSTRACT

A shear flow aerodynamic theory for steady incompressible flows
is presented for both the 1lifting and non-lifting problems. The unique
feature of the present theory is the consideration of the slow variation
of the boundary layer thickness. The slowly varying behavior is treated
by using the method of multi-time scxles. The analysis begins with
the elementary wavy wall problem znd, through Fourier superpositions
over the wave number space, the shear flow equivalents to the aero-
dynaaic transfei functions of classical potential flow are obtained.
The aerodynamic transfer functions provide integral equations which
relate the wall pressure and the upwash. Computational results are
pr‘esanted for the pressure distribution, the 1ift coefficient, and
the center of pressure travel along a two dimensional flat plate in a
s_hsar flow. The aerodynamic load is decreased by the shear layer,
compared to the potential flow, whilé the variable thickness shear
layer decreases it less than the uniform thickness shear layer based

upon equal maximum shear layer thi.cknesses..



A, Ao. AI

KA A

p{x,y)
P

By (%:¥)s Puor Pyy

ﬁ;
R
R

u, Vv, W

W ix,y)
"'(x.Y)

NOMENCLATURE

perturbed characteristic length in mean flow direction
Aerodynamic influence functions in physical space
Aerodynamic influence functions En wave number space
See Equation (16)

Wing span

Wing chord

Surface Contour (Figure 1)

Wavy wall amplitude

Bessel function of second kind of order v

Aerodynamic kernel functions in physical space
Aerodynanic kernel functions in wave number space
Characteristic length in mean flow direction

See Equations (16) and (21)

Exponent in shear layer velocity profile (see Eq.(4 }).
Fluid perturbation pressure

Wavy wall fluid pressure

- Wall pressure

Wavy wall fluid pressure at wall

(Gz . Y2)1/2

RS

Fluid perturbation velocities in x, y and z directions
Shear flow mean velocity

Free stream velocity

Upwash = U1§§IX.Y)

Wavy wall upwash

See Equation (4G)
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Coordinate axes
(see Figure 1)
See Equation (8)
Pluid density
Gamma function

Boundary layer thickness

Maximum boundary layer thickness along chord
(trailing edge)

Wave numbers in x and y directions

-&':c&m.-!\f—‘Y‘sm

X

or §
max/ c

)

1 1 R
-2-+-§ in main text

i

fluid kinematic viscosity in appendix,

= total 1ift / (3 o U2.c)

= moment about leading edge / (-12-' p U2 . ¢c2)
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I. INTRODUCTION

To account for the presence of the boundary layer adjacent to any
solid surface in a fluid flow theoretical analyses of the shear flow
effect have been made by many researchers [1-20]. Common to all the
above analyses is the assumption of the uniform thickness of the
boundary layer initially present before the solid boundary surface is
deformed. However, the boundary layer normally grows in the mean flow
direction and one naturally would like to know how the boundary layer
thickness variation affects the aerodynamic ;oad on the solid surface.
This paper deals with this problem but is restricted to the steady,
incompressible filow with a slowly varying boundary layer. Similar reasoning
can be extended to unsteady and compressible flows.

Since this report is an extension of Ventres' work [19], we first
briefly review and quote his uniform thickness results and then develop

a theory for the slowly varying boundary layer problem.
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I1. BRIEF REVIEW OF VENTRES' RESULTS

Consider & steady, incompressible shear flow over a surface whose
deflection is given as z = £(x,y). See Figure 1. The surface deflection
produces a small dis: urbnnce from an initially parallell shear flow
u=U(z), v=ws 0. The function U(z) is constant for z > & so that
the shear layer is limited to the region 0 < z < & adjacent to the
surface.

With the choice of the mean flow U(z) -(AU&(zIS)IIN Ventres was
sble to relate sem~~analytica11y the upwash W(x,y) everywhere 1n the
z = 0 plane to the perturbation pressure distribution on the wing p(x, y)
(vecall that we are dealing with the lifting problem) according to

..Ll.ﬂ II K(x-E, Y"n) E Lgang
1 wing pu,, ddn

where W(x,y) = 3f(x,y) and £(x,y) is the wall deflection. The

Ul 3xX
two-dimensional kernel function K(x), which is of fundamental importance,
is shiown in Figure 2 for N = 7 and 11, Also shown is the potential flow

result,

KL= 1

1]

which is labelled in the Figure as N = o, All three curves have a common
asymptote as x/. + ® , and in fact are essentially identical for x/,>2
or so. Since K physically is the upwa;h caused by an impulse pressure,
this implies that the influence region of the shear layer is limited to

& distance on each side of the source point comparable to the shear layer

THR
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thickness, or the shear layer effect is "nearly local", This points
up the possibility of accounting approximately for the effect of
slowly varying boundary layer thickness by inserting a variable &§(x)
directly into Veniros uniform thicknes: shear layer theory. The
problea is then how to insert the variable 6&(x) appropriately. The
rost of this paper will denonscr;te the reasonable way of doing it

using the multi-time scale concept [21].
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IXI. SHEAR FLOW WITH SLOWLY VARYING BOUNDARY LAYER THICKNESS

(a) Governing Equations And Boundary Conditions
Detailed order of magnitude analysis given in the Appendix shows

that the perturbation pressure p{x,y,z} satifies

2 |
vZp-2 3z 3 =0 1
U az

The associated boundary conditions are [12, 19]

3 = ol {z = zo) aw (2)
az Ix
zez,

on the solid surface as 'zo + 0, where
w =y ! . 2{
=z 2= ax

and the finiteness condition

p+0 as z > (3)

We assume the mean flow,

U= Ul z > §(x,y)
Uy 12 N z < 50xy) .
. §(x,y)

While assuming a discontinuity in the mean flow vilocity gradient across

z =« §(x,y), we impose the continuity of the pressure and the pressure gradient

1%
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across the boundary layer edge, i.e.
at ‘z = §(x,y)
POLY,z = 67(x,¥)) = P(uY,2 =8" (x,7))
and %pz, (x,y,z =8 (x,y)) = %pz_tx.y.z-f(x,y)) _ (5)

From Equations(l) and (4) the pressure within the shear layer

region satisfies
v2p -2 pp=0 (6)
NzZ 3z

which will be solved along with the wall boundary condition,

Equation (2), i.e,

= . 2 (wx 2
%_E_ p U% (z=2,) g_xé . a5 z+ 0 (7)
%z,

and another boundary condition at the boundary layer edge to be derived
from the field equation outside the boundary layer satisfying the
finiteness condition far away from the solid surface (see Equation (14)}).
(b).Normalization

In view of the slowly varying behhvior it is convenient to write
the boundary layer thickness

¢ =8 (cE, €'n)
where € << 1 and e' << 1. Here, € and ¢' are non-dimensional para-

Reters characterizing the slow variation of the boundary layer ihickness

AEPRONUCTRTITY 7 THE

ORI s R
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in the x snd y directions respectively, ¢.g. ¢ = Gn.nx/ and c' =

L
cwb. Gm is the tiaiiing edge shear layer thickness which is
ususily the maxinum along the chord of an airfoil and b is the wing
span. £ and n are non-dimensional coordinates defined as

£= » Ny » T =2 (8)

X

7 ]

é'm Spax &(eE,e'n)

The defirnition for £ has the advantage that all toundary conditions
are applied on constant values of { , e.8. £ =0,=1and - =
(corresponding to z = 0, §(x,y), and +~ =),

(¢) Wavy Wall Problem - Elementary Solution

Consider a wavy wall whose profile is describ«d by the real

part of the complex function

€(x,y) =F e i(ax+yy)

- T o L(aE) o

where a=a Gmax N y-ycm

The wavy wall will generate a perturbation pressure field of the following
form. |
p = p(c.e6,e'n; a,Y;e,6') ot (5T (10)
in which the slight amplitude modulation due to the slow boundary
layer variation is manifested by the functional dsperndence of p on
€f,¢'n € and ¢'. We further assume the following series expansion

for p since e << 1 and ' << 1[21].



PC L8, €'n; Ti¥se,e') = Po(2.eE,6"n;a,7)

+ :1-:'10:.&5.5"1: :o?) (11)

. e"ﬁl'(c.ce,eh;a',?) + H.0.T.

Rewriting Equation (6) in terms of £, n, ; rather than x, y, 2 by
means of Equation (8) and substituting the assumed wavy wall pressure
solution, Equations (10) and (11), into the resultant equation, one can

show that the lowest order governing equation for 56 is

=y by 2 -—
Pyp.2 W - )iz?po-o (12)
age  Np 2¢ Gmax

where & 1s <ie cariable boundary layer thickness. The higher order
equations, which are not shown here, have lower order solutions as
their fbrcing functions.

The required wall boundary condition for solving Equation (12)
is obtained by substituting Equations (9) and (10) and (11) into

Ecnation (7) and identifying the zeroth order relation, namely

- 8
a p(a %m)2 UZ(_;g =L, )(smax g_max) (13)

¥

as ¢, + 0. The higher order wall boundary conditions are trivial,

aio
¥4

2=z,

Iap =0 forall i>1, as g, + 0

7y,

Another boundary condition ai the edge of the shear layer for solving

0

Equetion (12) is obtained by setting N = » in Equation (12) and applying



tho finiteness condition as ¢+« , i.2.

3P, +(;.i' )30 = 0 ' (14)
max
Everywhere cutside the boundary layer and in particular at the boundary layer
edge £ = 1 because of the continuity of the pressure and the pressure
gradient across ¢ = 1.
Equation (12) subject to boundary conditions (13) and (14} gives

the wall pressure solutien [19],

- — : . 2
Py (a,7,6007)) = K(,807)) we 01 (15)
901 Ul 2n
where
A=i 2y
=i g (2 + L(RS)
A, R \Ré orr CF TAT
" 0‘}{3{]0 b\' ~ e 1,-;',-:,}{‘\
ﬁ'ﬁg v i 27
Al (1 (ﬁxﬂyﬁﬁﬁl‘L
Avmv.g ~v]
T (1+v)
L(RS) = T (R8)<3,_, (RS) (16)

T, O+, RS

W*(a,y) = io ¥ .(2m)?

9
The solution is the same as Ventres' except his uniform thickness has
been replaced by the variable thickness &(x,y). Henceforward, the 0

subscript on p_ 1is dropped, for simplicity.
o .

oy e o i

B



Thus we have obtained the pressure amplitude function for the -
wavy wall problem using the shear flow model of slowly varying boundary
layer. The pressure amplitude is proportional to the upwash W*

- as expected in a linear theory. ul
For an arbitrary wall deflection we can use the superposition
property of a linear theory to form Fourier 1n§egrsls. However the

Fourier superposition should be performed carefully as shown in the

following two sections.
(d) Pressure Load for an Arbitriury Wall Deflection - Non-lifting Problem

Ne have juct derived the lincar relation for wall pressure
amplitude (15) for a wavy wall problem. Through the linear super-
position of the wavy wail solutions over all possible wavs numbers,

the wall pressure due to any properly behaved wall deflection is

B, (%780 = [ [ B, (avi6(x,y)) 2O gagy 17
U, 2 R

1 1

Substitution of Equation (15} into Equation.(17) yields

p, Guv80uy)="1\2 Hf K@ristay)) ¥ (n) o 2O Maagy (18
_ 2% -t0 ]
PUy \ 1

To write Equation (18) as an integral in physical space, we define
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/ -
AGx',y',8(x,y))E { 1\2 /] R(a,vi8(xy)) o 10XV Jgagy (18a)
\") ~
vhich implies
Ko, vi600uy)) = [T AG'y'38 (y)) O 1" gyeays (18b)
In addition, we have
¥ xy) = (1 V2 ] wrie,y) e 1Y) gy (18¢)
Ul 2y] - U1

Using (i8a) and (18c), one can easily show that Equation (18) is

equivalent to

Py (x,y,80x,5)) = [f Alx-x*, y-y';6(,y)) ¥ (x',y'; dx'dy" (19)
2 " St

Alternatively, one can arrive at Equation (19) by using the Fourier

convolution theorem directly from Equation (18) with the recognition

that Equation (18a) is a defimition af A(x',y'; 6(x,¥)) in terms of

A(r,Y;8(x,y)) and &(x,y) is treatsd as irrclevant to the Fourier integrals.
| Either of Equation (18) and Equation (19) can be used to calculate

the wall perturbation pressure for a given upwash W(x,y)}. However, a

~ drastic reduction of cumputation time can be made by recognizing that

the quantity (1 - &§(x,r)).is everyvwhere smaller than one except near
*nax | |
the leading edge where &(x,y) - 0. Hence, we can «xpand the function A

in Equation (18) in terms of a power series of (1 - &(x,y)); the
Eo.
max

resultant pressure solution presumsbly will be valid everywhere except
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near the leading edge where our theory is not oxpected to be accurate

in any event because of the rapidly changing boundary layer thickness.

It can be shown that

Ko At + 71 - §{x,Y)\A* + O f1-8(x,¥)\ 2 (20)
R LA _
where
Aot.é_g_(z )2/"Lcnsm1_
A, R ""'"kam

A* = 2 2 LRS_. )-L.(RE )
1 = (-ié——) [ﬁ' R max”~ 1Y max ]

LRSL, D = LR, ) ¢ 1 (RE,, ) | (21)

Ly {RG )‘+ L 1- vmaﬁax)

Ly(RE_, )= 4 4 cosm/ [ ‘ + I_ (RS )]
N
{I (6 )

R$
nax

Substitution of Equation (20) into Equation (18) and the use of the

Fourier convolution theorem gives the wali pressure,

Py (x,7) 2Py * (1 6(_{))[) 2 (x,y)+0(l -8(x,¥)"? . (22)
mlz W;z max’ pU.2 Spax /

where

%v_'gz(x.y) = [ Ajlx-x', y-y', !l_(x‘.)f') dx'dy’ | (23)

1 e Ul
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and

Pup () = [ A Gx-x",y=y') W (x',77)dxtdy!
#0,2 -~ 4

b -2

Ao and Ai are the Fourier inversion of AO* and Al* defined in Equation

(21) and can be ovaluated numerically, i.e.

A y) = 1 \2 1 AW i(ax+yy) dad
0 (Xs¥) (ﬁ)II 0" ® ady

A, (x,y) = ( %,,)2 {{ At e L(ox+vy) 4ody

Here, Ao is the same as Ventres' result except his uniform thickness
has been replaced by the maximum thickness 8 ax® Ay is a new function
used to calculate the pressure correction due to the slowly variation
of the boundary layer, but it is independent of the detailed variation
of the boundary layer which enters the préssura solution in the factor

(1-‘%£§LZ)) in Equation {(22). One can show that Al vanishes as §
nax max

approaches zero, a natural result bscause of the loss of the "variation"
of the boundary layer as the boundary layer vanishes.

Thus we have derived a schems for calculating the pressure load
on any solid surface which is deformed slightly from its flat position
énd exposed to a shear flow whose boundary layer ihickness slowly
‘varies. In aeronautical jargon, we have solved the non-lifting problem
because the equations we hﬁve found (Equations (19) and (23)) require
-the upwash W(x,y) being given everywhere in the z = 0 plane. For the
technologically mére important lifting problem the above Fourier super-

position of the pressure ioad alone is not sufficient and a slightly

e v

n.h_:»m‘. oL

-
K
X
{
;
¢
3
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different procedure is needed as will be seen in the next section.

(e) The Pressure Load for an Arbitrary Wall Deflection - Lifting Problem

For the lifting problem, it is convenient to write Equation (15) as

(1 )2 We = X3, (0,7i80x,7)) (24)
2% Ul 3-1-1-12

where X is the reciprocal of A defined in Equation (16) and is the same as
Ventres' kernel with his uniform thickness replaced by the variable

§Cx,¥), iR &

KaA R (R_s )2/y!.(x15)- (25)
i o7

Multiplied by _ej'(‘”‘"'W ) and integrated over (x,y) space, Equation (24)

results in the following upwash equation,

¥ (LY K Hexo) gady (26)
'Jl 2n Ui

= fI % Ca.v;ﬁ(x.ﬂl'ﬁ,,(a.v;ﬁtx.y)l el (0x47Y) 4,4y
: pﬁ-iz :

In addition, the superposition resuit Equation (17) still holds for
the lifting problem, i. e.

Pu (xuyisbo)) = [f B, (viet) o 1 W gaay . an

pU o s 9
. 1 oY,



- 14 -
wnich can be formally inverted to give

- - - 1 t
E Byamis ) = (1) [f g, (uy';80un) o Lax'evy'Ygergyr  (28)
2n Eﬁ- 2
1
%_ In obtaining Equation (27), 6(x,y) has been treated as irrelevant to
% the int¢egral operation. Note that prx',y';ﬁ(x,y)) is not the real
!
3 wall pressure as it should have been if x', y' are replaced by x, y.

L Substituion of Equation (28) into Equation (26) gives the familiar kernel

function form for the 1ifting problenm.

. © W ) =[] K(x-x', y-y'380a3)) By, (7,y'36(x,y)) dx'dy! (29)
: l.l1 wing v 2 _ _
+4 : Ful
where = .
| (e, 8y0s (L2 [f Ria,vi8txay))e (X Dgady (30)
: 2] e

The domain of integration in Equation (29) is within the wing surface
aresa because p, = 0 everyvhere off the wing for the lifting problenm.
The kernel function inversion, Equation (30), can be evaluated semi-ana-

[19]

lytically according to Ventres . A convenient splitting of K

E into two parts is

K=K +K (31}
% vhere
T = 2/ .
QAR (LT
i a\2 L(RS)
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v B (R
I—' 5 2 - f.f:“‘i" :’"‘i.‘ 'I‘II'

BE??QDEZjTEiTﬁ‘L
A = \’r 1'\!
>

QRGN A =
-El can be inverted numerically to give K, and fz can be inverted

analytically to give K, so that

2

K=K +K

1+ K (32)

For two dimensional shear flow,

2
KZCx,SCx)) = A“ 8 /N I'(2v}cosfr |},
X 2|x[ N
and for three dimensional flow

2y %
Ky (x,¥,8(x,y)) = - 2v2s 'n [ U

T -0n (W)S*Z/N

Similar to the non-lifting problem an expansion of the tranformed

kernel ¥ in terms of the quantity (1 - §(x,y) can be made.
8
max

K=K+ (1-:;;,;;)) Kp* + 0 (1":&*:}:2) (33)
max ‘max
where
2/

K= A, R (R5max)N /L (RS .. . (34)
i o 2
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K = A R asm)/n (LR, -2 /Lfﬂﬁmax)
'3 \:. W) ¥

Substitution of Equation (33) into Equation (30) gives

K(*Ja (xDY)) = KA(xny) + (1' (X.ZJ)KB(JC.Y)*‘O(I-NX_-,!))Z (35)
6max 6max
where KA and KB are the Fourier inversion of KA* and KB*

respectively, i.e.

K‘(x’y) = }‘)2 ff KA. e i(ax+yy) dady
) 2r -

and (36)

L

KB(an) = l 2 J’I KB* e 1 (ax+vy) dady

m -0

‘A is the same as Ventres' K with his uniform thickness replaced by

. . . - . . .
Gmax' The numerical inversion of KB to give KB is straight forward.

Both Ky and K, for twe dimensional shear flow are shown in Figure 3.

B
We further assume that

B, (XY38(%,Y) = p g (,Y) (- Gtx,y)) 21 (x.yl+0(1-6(x Y)) G7)

Eﬁiz U max pU12 max

e

Pt

which is presumably allowed as far as &(x,y) is not anywhere near zero.
Substituting Equations (35) and (37) into Equation(29), One can equate
the terms of zeroth and first powers of (1 §&x, Y))to yield the following

two kernel function forms:
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Wix,y) = [[ K, (x-x', y-y') p, (x'.y') dx'dy’ (38)
U, wing U2
surface 1
and
W) = [f K, (x-x', y-y') B, (x',y') dx'dy' (39)
—_— wing . 1
l.l1 surface oUl2
where "eq is an equivalent upwash in terms of the lowest order solution

Pw (x,y) i.e.

0
Wogtoy) = [[ - Kglx=x', y=y") p, (x',y') dx'dy’ (40)
— Wing area 0
U, 0U12

The domains of integration of the integrals in Equations (38), (39) and
(40) cover only the wing surface area becausc the pressure is zero
- everywhere off the wing surface for the lifting surface problem.
Then the solution procedures are
(1) to solve for pwo(x,y) from Equation (38) for a given upwash_
Wix.y),
(2) to calculate the equivalent upwash.Wéq(x,y) from Equation (40),

(3) to solve for P, (x,y) from Equation (39), and
1

'(4) to form the final solution using Equation (37).

Thus a lifting surface theory for variable thickness shear flow
is completed. It is seen from Equatien (37) that the local pressure
depends solely on its local boundary layer.thickness for a slowly
varying bbundary flow to the lowest order approximation. However,

Equation (29) says that not only the variable &(x,y) should be
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included in the kernel functinn K but alsc the wall pressure
appears in the integral equation as the fictitious BFessure
Pw(x',y', §(x,y) which is not the triewall pressure Pw(x,y;
§(x,y)). The latter was not seen from Ventres' uniform thickness
zolution although the replacement of ¢ in the kernel function
was suggested, and the expansions, equations (33) and (37) are
required to render the two integral equations (38) and (39) in
conventional kernel function form.

The expansion parameter in the above analysis has been chosen
tobe (1 - & ). An alternate series expansion can be worked out

8
using the pa?%éeter gg{éza The former expansion involves
dx ul

ax)'

the detailed boundary layer thickness variation, while the latter /$
only concer;;/%ith the trailing edge boundary layer thickness
variation. However, Pwl in Equations . (22) and (37) remains the
same for both choices of the expansion parameter. Although the
latter expansion is probably formally preferable since a uniform
series convergence is expected, the numerical results shown below

have been carried out using the former.
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IV. PRESENTATION OF COMP_TATIONAL RESULTS

The shear flow lifting surface theory derived above has been used
to calculate the pressure load on a two dimensionzl flat platé air-
foil of finite chord in steady shear flow. Both Ventres' uniform
thickness results and the present variable thickness results are
presented for comparison. The familiar collocation method was used.
The pressure was expanded as a linear combination of selected modal

functions and the upwash was matched at all the collocation points

The assumed modal functions, (x/c)n /(l-x/c)/(x/cJ forn=10,1, 2,....,
are equivalent to buc slightly different from those used by Ventrestlg].
The details can be found in his paper and are not elaborated here. Shown
below are (a) the pressure distributions, (b) the total lift coefficients,
and (c) the corresponding center of pressure travel for a turbulent
shear flow model. In addition, a lift coefficent resuic for a laminar
shear flow model is given. For the turbulent shear flow case, the
boundary layer was assumed to grow according to SCx)/Smax = (x/c)4/5.
For the laminar shear flow case, it is assumed that S(x)/ﬁmax =
/)2,
(8) Pressure Distributions - Turbulent Boundary Layer
Figures 4 and 5 show typical pressure distributions along the
chord for twc different ratios of the trailing edge boundary layer
thickness to the chord length. The exponent N in the velocity
power law is chosen as 7. It is seen that the variable thickness

curve fits in between the potential flow (top curve) and the uniform

_shear (Iowér curve) results. The thicker the boundary layer is,



(b)

(e)

(d)

RLEPL . e
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the larger the shear layer effoct is on the pressure load. This
is mainly due to the augmentation of the momentum thickness of
the boundary layer which reduces the momentum transferred to the
perturbed surface. Similar results for the N = 11 case have
been calculated and show less shear effect because the N = 11
case is closer to the potential flow (N = «) than N = 7 case
as far as the mean flow velocity distribution is concerned.
Lift Coefficients - Turbulent ﬁoundary Layer
The normalized 1ift coefficients are plotted in Figures 6
and 7 for N = 7 and N = 11 cases. Figure 6 indicates a 5%
increase in the total 1ift for the variable ¢ compared to the

uniform & case corresponding to Sm = ,1 and N=7, Figure

ax/c

7 shows less change as expected. The reductirn of lift coeffici-
ents is a natural result of the pressure decrease due to the
existence of the shear layer.
Center of Pressure Positions - Turbulent Boundary Layer

Figures 8 and 9 demonstrate the shear layer effect on the
center of pressure locaticn. It is seen that the thicker boundary
layers result in further backward movement of the center of
pressure behind the quarter chord. This is caused by the more sig-
nificant pressure reduction near the 1oading edge than that near
the trailing edge for the shear flow,
Lift Coefficient for A Laminar Boundary Layer Flow

Figure 10 shows the calculated 1lift coefficient for a
laminar flow. The choice of N= 2,1 simulates the Blasius'
laminar boundary layer velocity profile in an approximate way

as shown in Figure 11. The choice of N = 2.1 instead of N= 2 is
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because the kernel function is singular at N = 2. Due to this

singulsrity the accuracy of the laminar result is somswhat suspect
although Figure 1o shows the same tendency as the turbulent result.
For N = 2 the present theory simply predicts zero 1ift. This is
because the kernel function tends to infinity everywhere as N + 2
and hence one must have zero wzll pressure to balance the finite
upwash on the left hand side of the equation (38). This fact
points ocut the limit of validity of the present shear flow model
tor (noarly) laminar mean flow. Thus, one ought to include the
viscosity effect, which is neglected in our shear flow model, in
the analysis for the laminar boundary layer or.equivalently, postu-

late a finite wall velocity according to Lighthill[sl.
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V. CONCLUSION

A method of calculating the pressure distribution on iifting
surfaces in incompressible shear flows with slowly varying boundary
layer thickness has been developed. The assumed mean flow velacity
profile, u/Ul = (z/G(x,y)ilfﬂ, is a good approximation for turbulant
boundary layers at high Reyncld's numbers, although it predicts an in-
finite wall sheai stress. An interesting point of using this ﬁelscity
profile is the assumed zerc mean fiow velocity at the wall which avoids
the problem of postulating a finite wall velocity as many authors have
done. In any case the boundary layer reduces the pressure load com-
pared to the potential flow, but the variable thickness shear flow
model reduces it less for equal maximum shear layer thickness.

The present theory for the variable thickness problem has been
worked out in detail for the steady, incompressible case. Its extension
to three dimensional, unsteady compressible flows seems to be workable.
However, a question does arise as to whether the assumed pressure mode
functions for supersonic flows should satisfy the kutta condition at
the trailing edge. This is not clear because the flow is subsonip-near

the soiid surface and is supersonic away from the surface.
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STEADY AIRFOIL MOTION IN A SHEAR LAYER OF VARIABLE THICKNESS
Wo first consider for simplicity two-dimensional flow; it will
be clear.that the basic result hoalds in three-dimensions. Beginning

with tho equations of a fully viscous flow (Navier-Stokes equations) [22]’

du+ aws=0 continuity (1)
9x 3z
u§3_+wa_u=-(1/)§p_ %*v(azu ‘aiu) streanwise
ax 3z o/ ax ax? az¢ X - component of
momentum balance (2)
U+ wIwa-(1/ )i + v( 32w + 32w . transverse
X 3z b3 axZ 327 Zz - component of

momentwn balance (3).
We now construct an order of magnitude analysis of the various terms.

For this purpose several scale factors are introduced. The boundary

layer thickness, & , 1is a characteristic length of the mean (shear)

flow in the z direction; & 1is ¢ characteristic leng.h in the x direct-
ion associated with the growth of the b&undary layer thickness; and a is
a characteristic length in the x direction associated with the variation
of airfoil upwash or angle of attack. First considsr the mean flow with no

upwash or angle of attack perturbation. We assume that

n 1/1 : §_w 1/6 ‘ G]

and
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From continuity,
0 (u/n)u::(w/m)-oa—wuus/,L ()
From x - momentum, | | P
2 -
0(%_)1»0 (%u_)- (1/9)%4-0(%)4-0(.\3:%' (6)

Using (5), the two terms on the left hand side of (%) are seen to be
of the sams order. On the right hand side, the second term may be »
neglected compared to the last and the latter we require to balance with

the left hand side

C(P) 0 ( |

8/, % 0 (Re)'llz (73

where the Reynolds number is given by

Re = ul
v
Fromw z - momentum,
NG IRANCO RGN ARNC IRENC- DR

Using {5) and (7), we conclude from (6) that
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and from (8)
(1/,) 22~ 0 u2 3 $)
3z
Thus
3p << 3p
3z ax

and the mean pressure is essentially constant through the boundary layer.

Thase results are well-kncwn, of course, and due to Prandt_lzz. We

shall use a similar approach for the perturbation equations where
there is a non-zero upwash or angle of attack.
Let
u (x,z) = ulx,z) + a(x,2)
w (x,z) = W(x,2) + W(x,z) (9
P (x,2) = p(x,z) + B(x,2)

~

where - denotes mean flow and perturbation., From our previous
analysis we note that p(x,z) = p(x). Substituting (9) into (1),
(2), (3) and subtracting out the mean flow equations one obtains the

perturbation equations. These are

W+ =0 continuity (0)
ax 9z
WAl +0du+wI WO
ax X 93 9z
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» (M) 3 ¢ v 220 )
X

—7 -1
X 9z x-momentum (11)
WA+ 03+ WIN+ O IW
F) ax 4z 4z
- (v, )_p_-v u(aza + 2%
= =T
ax ax z-momentum (12)

We assume that

3a0) v (Mg s 3~y 5 30~ OV,
3z ax :

X
and § << 2
G/a v 0 (1) (13

a << i

Other interesting cases could be considered; for example, 6/3 > 1
or << 1. However, we shall not pursue these here,

From continuity,

a 0 =0+Qvld$ 14)
° (7)) (§)oTere ()

From x - momentunm,

o(un)+o,(/yﬁ M+ 0 06u

.- (1/9)%}9{_-&-0(%%.) + 0 (\3:%) | ‘ (15)



In the above, we have used (5) and (14) to replace w, # and
indicated by an arrow negligibly small terms. By the assumption of
6/‘ A~ 0(1), the last two terms on the RHS of (1S5} are of the sanme
oxrder., Let us compare the latter of these to the (remaining) terms

on the LHS. Recall from (7) that

v 6,02
ue
Thus
vl n ﬁg
32 T

which is negligible compared to LHS of (15)., Hence, x-momentum equation

simplifies to

WAl eddu=- (/) (16)
ax H ax _

Note that if a i , then one must include viscous terms and hence
the basic validity of a shear flow, as opposed to a fully viscous
model is dependent upon a << L. Fdrmally fhix need not be true for
turbulent flow where [22]

vooov (88
u
However, then the question arises as to what viscosity coefficient

one should use[sl.

From z-momentun,
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o/%'g_g) + o@_gfh OM

\ a3 L — 8 L

401&/354{?- - (/,1 3 +o0 "u 6 Qa7
alt 3z ) a

vhere we have used (S), (7) and (14) to simplify terms in (17) and
indicated by an arrow those which are negligibly small. Thus the
z-momentum equation beccnes
uae = - (1/) 3% (18)
x 3z
Cur final equations are then (10), (16) and (18). Using these we may

obtain a single equation for p,

V2p - 293U 3p - 3p = 0 (19)
8z 3z ax dx :
U u

whers the last term may be neglected consistent with cur previously
announced assumptions on the varicus length scales. Note that we

have dropped the ~ and replaced u by U.
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